Inloggen

Massa meten in de ruimte
vwo 2022, 2e tijdvak, opgave 1




Vraag 1

Een weegschaal meet eigenlijk niet massa maar gewicht: de kracht waarmee voorwerpen, dankzij de zwaartekracht op aarde, op de weegschaal gedrukt worden. Omdat het ruimtestation zich in een baan om de aarde beweegt heerst in het ruimtestation gewichtsloosheid en hebben voorwerpen geen gewicht.

Vraag 2

  • Zie afbeelding hieronder. In situatie 2 zijn beide veren even ver uitgerekt en oefenen dus een even grote (maar tegengestelde) kracht uit. De krachtvector van de rechterveer (FR) is dus even lang als FL. In situatie 3 is de uitrekking van de linkerveer groter en die van de rechterveer kleiner (maar nog groter dan de rustuitrekking van situatie 1). De toename van u links is even groot als de afname van u rechts. Omdat kracht en uitrekking van een veer rechtevenredig met elkaar zijn (F = C·u) geldt dit ook voor de krachten. De toename van FL (rood in de afbeelding hieronder) is even groot als de afname in FR.
  • Voor de grootte van de krachten geldt

    FR = C*·uR
    FL = C*·uL

    De resulterende kracht is het verschil tussen deze krachten

    Fres = FR - FL

    Fres = C·uR - C·uL

    Fres = C·(uR - uL)

    In de evenwichtsstand van situatie 2 geldt uR=uL en is Fres gelijk aan nul. Als de massa een stukje Δu verschoven wordt naar rechts wordt de uitwijking rechts gelijk aan uR-Δu en de uitwijking links gelijk aan uL+Δu. Invullen geeft dan voor de resulterende kracht

    Fres = C·[(uR-Δu) - (uL+Δu)]

    Fres = C·[uR - uL -2·Δu]

    Fres = C·[0 -2·Δu]

    F = -2·C·Δu

    Het minteken betekent hier dat de kracht tegengesteld is aan de richting van de uitwijking, precies zoals je zou verwachten. De factor 2 betekent dat de veerconstante het dubbele is van de veerconstante van een enkele veer en dus gelijk is aan 2·25 = 50 N/m.


Vraag 3

In figuur 3 zien we dat de amplitude gelijk blijft. We kunnen dus gewoon aflezen op welk moment de trilling in dezelfde fase is als aan het begin. We lezen op deze manier af dat 3 trillingen 1,26 s duren. We vinden dan voor de trillingstijd

T = 1,26 / 3 = 0,42 s

Aan de sinusvorm van de grafiek zien we dat het om een harmonische trilling gaan, het is immers een massa-veersysteem, en dat dus geldt T = 2π√m/C. Als we de formule omschrijven vinden we

m = C·T2 / 4π2

Invullen van

T = 0,42
C = 50 N/m

geeft

m = 0,22341 kg

Afgerond is dit een massa van 0,22 kg.

Vraag 4

Voor de maximale snelheid bij een harmonische trilling geldt

vmax = 2π·A / T

Amplitude (A) en trillingstijd (T) lezen we af uit de figuur op de bijlage. We lezen een amplitude van 0,375 m af en zien dat 3 trillingen 8,4 duren. Trillingstijd is dus 8,4 / 3 = 2,8 s. Invullen geeft dan

vmax = 2π · 0,375 / 2,8 = 0,84 ms-1.

(Een alternatieve manier voor het bepalen van de snelheid is het rekenen van een raaklijn op het moment dat de snelheid maximaal is, namelijk als de grafiek door de x-as gaat.)

Zie afbeelding hieronder voor hoe de v,t-grafiek getekend kan worden met behulp van de x,t-grafiek. Voor het schetsen van de grafiek moeten we er rekening mee houden dat v = 0 als de x,t-grafiek horizontaal loopt: Dit zijn de toppen en dalen van de x,t-grafiek (blauw). Als de grafiek door de x-as omhoog gaat is de snelheid maximaal (groen). Als de grafiek door de x-as omlaag gaat is de grootte van de snelheid ook maximaal maar is de snelheid negatief (rood). Uiteindelijk ontstaat zo de v,t-grafiek die hieronder staat.

De vorm van de grafiek kan ook bepaald worden door te kijken naar de afgeleide. Snelheid is namelijk de afgeleide naar de tijd van de positie. In de x,t-grafiek herkennen we de vorm van f(x) = cos(x). Voor de afgeleide vinden we dan f'(x) = -sin(x). Dit is een negatieve sinus met dezelfde periode. De v,t-grafiek is dus sinusvormig en begint t=0 naar beneden lopend.

Vraag 5

Voor de veerenergie geldt Ev = ½·C·u2. De totale veerenergie is de optelsom van de veerenergie van de linkerveer en die van de rechterveer.

Ev,totaal = ½·C·uL2 + ½·C·uR2

Als we ½·C buiten haakjes halen vinden we

Ev,totaal = ½·C·(uL2 + uR2)

Dit is antwoord B.

Vraag 6

Bij vraag 2 hebben we gezien dat in de evenwichtsstand beide veren gespannen zijn en dus altijd een uitrekking hebben. Ook in de uiterste stand zal, zelfs als de uitrekking van één van de veren 0 zou worden, de andere veer op dat moment juist sterk uitgerekt zijn. De totale veerenergie wordt dus nergens 0.

Vraag 7

André kijkt naar het energieverlies per seconde. Energieverandering per seconde heet vermogen. Bij wrijving geldt voor dit vermogen

P = Fw·v

Bij luchtwrijving is de wrijvingskracht inderdaad afhankelijk van de de snelheid. Maar ook als de wrijving niet van de snelheid afhangt, hangt het vermogensverlies P wel van de snelheid af vanwege de factor v die in de formule staat. Ook bij een niet van de snelheid afhankelijk wrijvingskracht zal de grafiek dus hobbelig blijven.






massainderuimte-1

massainderuimte-2



Vraag over "Massa meten in de ruimte"?


    Hou mijn naam verborgen

Eerder gestelde vragen | Massa meten in de ruimte

Op maandag 22 jul 2024 om 14:23 is de volgende vraag gesteld
Hi Erik,

Kan je bij vraag 6 zeggen dat een veer altijd potentiele energie heeft en daarom dus niet naar 0 gaat?

Groetjes

Erik van Munster reageerde op maandag 22 jul 2024 om 15:22
Je moet er dan wel bij zeggen dat het om een gespannen veer gaat. Dat is hier namelijk de reden dat de potentiële energie nooit naar nul gaat. Een van beide of beide veren tegelijk zijn namelijk op ieder moment gespannen.


Op zaterdag 11 mei 2024 om 14:21 is de volgende vraag gesteld
Hallo, bij vraag 2 begrijp ik de uitleg. Ik zou er alleen zelf niet op kunnen komen. Heeft u tips, om dit op mijn examen wel te kunnen?

Erik van Munster reageerde op zaterdag 11 mei 2024 om 14:27
Enige tip die ik kan geven hierover is veel opgaven maken en jezelf nakijken. Inzicht is ook gewoon herkennen van een situatie die je eerder hebt gezien. Stel dat je in je examen een opgave krijgt die lijkt op deze opgave dan weet je (doordat je deze nu gezien hebt) hoe je het aan kunt pakken.

Dus: veel verschillende opgaven maken en dat je iets niet kan of zelf niet op het idee komt is niet erg. Dat is juist waarom je oefent.

Op zaterdag 11 mei 2024 om 15:56 is de volgende reactie gegeven
Hoe komt het dat Fr evenveel kleiner wordt als Fl groter wordt?

Erik van Munster reageerde op zaterdag 11 mei 2024 om 16:06
Stel dat de massa 1 cm naar rechts beweegt. De uitrekking van de rechterveer wordt dan 1 cm kleiner en tegelijkertijd wordt de uitrekking van de linkerveer 1 cm groter.

Dus ur neemt evenveel af als ul toeneemt en hetzelfde geldt voor de krachten Fr en Fl.


Op zondag 5 mei 2024 om 10:32 is de volgende vraag gesteld
hoe komen ze bij vraag 2 aan fres= 2 x c x u ? ik snap niet hoe ze aan die 2 komen, in het antwoorden boek staat namelijk dat je niet mag zeggen dat het 2 veren zijn en dat het dus 50 n/m wordt.

Erik van Munster reageerde op zondag 5 mei 2024 om 13:07
De veerconstante van het totaal is inderdaad 2 keer 25 = 50 N/m maar het gaat in deze opgave om de uitleg waarom het zo is. Alleen zeggen dat het 2 veren zijn en dus daarom 50 N/m is niet voldoende.

Voor de uitleg moet je kijken naar de resulterende kracht van beide veren samen en hoe deze kracht verandert als Δx verandert. Zie de uitleg voor de details.


Op maandag 29 apr 2024 om 13:11 is de volgende vraag gesteld
Beste Erik, als ik vraag 5 goed begrijp is het dus zo dat voor de totale kracht op de veer (Fres) geldt: 1/2*c*(ul-ur) maar voor de totale energie kunnen de de uitrekkingen juist bij elkaar opgeteld geworden? Alvast bedankt.

Erik van Munster reageerde op maandag 29 apr 2024 om 13:49
Klopt. Krachten hebben namelijk een richting (naar rechts of naar links) en energie niet.


Op zaterdag 13 mei 2023 om 10:22 is de volgende vraag gesteld
Beste Erik.
hoezo doet u bij vraag 3:
Fres = FR - FL

Fres = C·uR - C·uL

het is toch juist de grootste kracht min de kleinste kracht?

Op zaterdag 13 mei 2023 om 10:23 is de volgende reactie gegeven
vraag 2*

Erik van Munster reageerde op zaterdag 13 mei 2023 om 10:55
Het is hier het verschil tussen de twee krachten vandaar Fres = Fr - Fl

Het is heeft niet te maken met de groottes van de krachten. Als Fl groter is wordt Fres negatief en dat betekent gewoon dat de resulterende kracht ook naar links is.


Op zondag 22 jan 2023 om 16:36 is de volgende vraag gesteld
Fres = C·[(uR-Δu) - (uL+Δu)]

Fres = C·[uR - uL -2·Δu]

Fres = C·[0 -2·Δu]

F = -2·C·Δu

Beste erik,

Zou u deze stappen een voor een kunnen toelichten. Ik begrijp niet hoe ze dit hebben uitgewerkt.

Erik van Munster reageerde op zondag 22 jan 2023 om 16:52
Stapje voor stapje

Fres = C·[(uR-Δu) - (uL+Δu)]

Als je de haakjes weghaalt staat er (denk aan het minteken voor de tweede term)

Fres = C·[uR - Δu - uL - Δu]

We kunnen - Δu en - Δu optellen en dan wordt het -2Δu

Fres = C·[uR - uL -2Δu]

In dit geval zijn uR en uL aan elkaar gelijk en dus is uR-uL gelijk aan nul

Fres = C·[0 - 2Δu]

Fres = C· - 2Δu

Dit kun je ook schrijven als

F = -2·C·Δu