Inloggen

Operatiedeken
HAVO 2018, 1e tijdvak, opgave 2


Download hierboven de originele pdf van het examen waar deze opgave in staat en de bijbehorende uitwerkbijlage. "Operatiedeken" is de 2e opgave in dit examen. Als je de opgave gemaakt hebt kun je jezelf nakijken met het correctievoorschrift.

Uitleg bij "Operatiedeken"

Probeer altijd eerst zelf de opgave te maken en gebruik de uitleg alleen als je er zelf niet uitkomt. Als je ook na deze uitleg nog vragen hebt dan kun je deze helemaal onderaan deze pagina stellen.

Vraag 8

Uit de opgave valt op te maken dat een draad met een lengte van 8,8 km en een doorsnede met een oppervlak van 3,85·10-3 mm2 een massa heeft van 47 gram. Het volume (V) van deze draad is de lengte keer het oppervlak van de doorsnede. Wanneer we omrekenen naar m en m2 vinden we voor het volume

Vdraad = 8,8·103 · 3,85·10-9 = 3,388·10-5 m3

Voor de dichtheid geldt ρ = m/V. Invullen geeft dan een dichtheid van

ρ = 0,047 kg / 3,388·10-5 m3

ρ = 1387,25 kg/m3

Afgerond is dit 1,4·103 kg/m3.

Vraag 9

Voor de soortelijke weerstand (ρ, niet te verwarren met de ρ voor dichtheid uit de vorige vraag!) geldt (zie BINAS tabel 35-D1)

ρ = RA / L

De oppervlakte van de doorsnede van de metaaldraad (A) kunnen we uitrekenen uit de dikte van de draad. Er geldt A = πr2. De straal (r) is de helft van de diameter van de draad. We vinden zo A = π (½·40·10-6)2 = 1,2566·10-9 m2. Invullen in de formule voor soortelijk weerstand samen met R = 250 Ω en L = 1,00 m geeft

ρ = 250 · 1,2566·10-9 / 1,00

ρ = 3,1416·10-7 Ωm

Aflezen uit de grafiek in figuur 3 geeft een massapercentage Ni van 22,5%.

Vraag 10

In het schema in figuur 6 is te zien dat de stroomkring bestaat uit twee groepen van elk 5 draden. De draden binnen een groep staan parallel en de twee groepen staan met elkaar in serie. Voor de vervangingsweerstand van parallele weerstanden geldt

1/Rv = 1/R1 + 1/R2 + …

Voor de weerstand van één blok van 5 draden vind je zo

1/Rv = 1/3,6 + 1/3,6 + 1/3,6 + 1/3,6 + 1/3,6

1/Rv = 1,388889

Rv = 1/1,388889 = 0,72 Ω

(Dit is 5 keer zo laag als de weerstand van één draad). Omdat de schakeling bestaat uit twee van deze blokken is de totale vervangingsweerstand het dubbele hiervan namelijk 1,44 Ω. Afgerond is dit inderdaad gelijk aan 1,4 Ω.

Vraag 11

De stroom die er gaat lopen kunnen we uitrekenen met de wet van Ohm. Uit U=I·R volgt

I = U/R = 12/1,44 = 8,3333 A

Het vermogen dat de deken afgeeft kunnen we vervolgens uitrekenen met P=U·I

P = 12 · 8,3333 = 100 W

Afgerond een vermogen van 1,0·102 W.

Vraag 12

Als de deken te warm wordt betekent dit dat er teveel vermogen (P) wordt afgegeven. Het vermogen zal dus kleiner moeten worden.

Het vermogen wordt bepaald door de spanning (U) en de stroomsterkte (I). Aangezien de spanning bepaald wordt door de (constante) voedingsspanning en niet verandert kan dit alleen door het kleiner maken van de stroomsterkte (I) in de deken.

Weerstand (R) is een eigenschap die zegt hoe goed stroom wordt tegengehouden. Een kleiner stroomsterkte kan bereikt worden door ervoor te zorgen dat de weerstand (R) van de deken groter wordt.

Bij een NTC neemt de weerstand af naarmate de temperatuur toeneemt. Bij een PTC neemt de weerstand toe als de temperatuur toeneemt. We willen juist een hógere R bij toenemende T en kunnen dus het best verwarmingsdraden van PTC materiaal gebruiken.

Vraag over "Operatiedeken"?


    Hou mijn naam verborgen

Eerder gestelde vragen | Operatiedeken

Over "Operatiedeken" zijn nog geen vragen gesteld.