Inloggen

De kracht van het viriaal-theorema
vwo 2017, 2e tijdvak, opgave 3




Vraag 12

Voor de gravitatie-energie en de kinetische energie gelden de formules (zie BINAS tabel 35-A4 en A5)

Eg = -G·m·M / r

Ek = ½·m·v2

Als eerste bereken je met de gegevens in de opgave de gravitatie-energie. De massa van de aarde (M) vinden we in BINAS tabel 31 en de gravitatieconstante (G) vinden we in BINAS tabel 7. De afstand (r) van het middelpunt van de aarde tot ISS is de straal van de aarde (6,371·106 m, zie BINAS tabel 31) + de hoogte (409·103 m). Dit is 6,78·106 m. Voor de gravitatie-energie vind je dan

Eg = -6,67·10-11 · 4,19·105 ·5,972·1024 / 6,78·106

Eg = -2,4617·1013 J

Uit de in de opgave gegeven formule (het viriaaltheorema) volgt voor de kinetische energie Ek = -½Eg. Dit betekent dat de kinetische energie gelijk is aan

Ek = -½ · -2,4617·1013 = 1,2309·1013 J

Voor de snelheid vind je dan

v = √Ek/½m

v = √ 1,2309·1013 / ½· 4,19·105 = 7,6651·103 ms-1

Afgerond is dit een snelheid van 7,67·103 ms-1.





Als je de complete uitleg bij oudere examenopgaven wil zien moet je eerst inloggen.







Vraag over "De kracht van het viriaal-theorema"?


    Hou mijn naam verborgen

Eerder gestelde vragen | De kracht van het viriaal-theorema

Op maandag 8 mei 2023 om 22:10 is de volgende vraag gesteld
Beste Erik,

Hoe kan ik bij vraag 14 de formule in stappen omschrijven naar M = v^2 * 5R / 3G

Graag uw reactie.

Chivu Gathier reageerde op maandag 8 mei 2023 om 22:14
Laat maar ik begrijp het al.


Op vrijdag 28 apr 2023 om 14:21 is de volgende vraag gesteld
u zegt bij 17: Omdat er maar één elektron in een waterstofatoom zit is de potentiele energie van de elektronen onderling 0 eV en bestaat Ep alleen uit de term Ep kern.

hoezo is dan de onderlinge potentiele energie 0? wat is het verschil van potentiele energie in een kern en onderlinge?

Erik van Munster reageerde op vrijdag 28 apr 2023 om 16:06
Je kunt, om het je voor te stellen, de potentiële energie tussen deeltjes vergelijken met gravitatie-energie tussen massa’s. Als twee massa’s zich op een afstand van elkaar bevinden hebben ze gravitatie-energie omdat ze elkaar aantrekken. Als je ze loslaat zullen ze naar elkaar toe versnellen en wordt gravitatie-energie omgezet in kinetische energie.

Potentiële energie tussen twee deeltjes kun je hiermee vergelijken. Het is de energie die deeltjes ten opzichte van elkaar hebben als ze zich op een afstand van elkaar bevinden.

In dit geval gaat het over de potentiële energie tussen elektronen. Bij een heliumatoom zijn er 2 elektronen die ten opzichte van de kern én ten opzichte van elkaar potentiële energie hebben. In een waterstofatoom is er maar één elektron en dit kan dus geen potentiële energie ten opzichte van een ander elektron hebben want dat is er niet.


vroeg op donderdag 26 jan 2023 om 10:08
-3GM2 / 5R = -2·(½ M·v2) hoe is dit omgeschreven naar M = v2 · 5R / 3G

Erik van Munster reageerde op donderdag 26 jan 2023 om 12:53
Stapje voor stapje:

-3GM^2 / 5R = -2·(½ M·v^2)

Beide kanten door M delen geeft

-3GM / 5R = -2·(½·v^2)

-3GM / 5R = -v^2

Beide kanten keer 5R geeft

-3GM = -v^2 * 5R

Beide kanten delen door -3G

M = -v^2 * 5R / -3G

Minteken boven en onder de deelstreep valt weg

M = v^2 * 5R / 3G

Zo dus. Maar het hoeft niet perse in deze volgorde .