Inloggen

Vleermuisdetector
havo 2023, 2e tijdvak, opgave 1




Vraag 1

In figuur 2 is te zien dat de trillingen aan het begin veel dichter op elkaar staan dan aan het eind. De frequentie neemt dus af. Dit komt overeen met de roep van de dwergvleermuis (linkergrafiek in figuur 1).

Vraag 2

  • De holte in het strottehoofd gedraagt zich als een buis met één gesloten uiteinde. Hierbij bevindt zich in de grondtoon een knoop (K) bij het gesloten uiteinde en een buik (B) bij het open uiteinde (zie afbeelding hieronder).
  • In de grondtoon geldt dat bij een eenzijdig gesloten buis ¼ λ in de buis past. De golflengte is dus 4 keer zo groot als de lengte van de buis. Uit de figuur kunnen we opmeten dat de lengte van de buis 2,55·10-3 m is. Voor de golflengte vinden we dan

    λ = 4 · 2,55·10-3 = 1,02·10-2 m

    Met v=f·λ en een geluidssnelheid van 343 ms-1 (Binas tabel 15A) vinden we dan

    f = v/λ = 343/1,02·10-2 = 33627,5 Hz

    Dit is een voor mensen niet hoorbare frequentie (max is 20 kHz).


Vraag 3

  • In de grafiek van het langzaam afgespeelde geluid is af te lezen dat 3 complete trillingen 212 μs duren. Één trilling duurt dan 212/3 = 70,6667 μs. Voor de frequentie vinden we dan met f = 1/T

    f = 1 / 70,6667·10-6 = 14250,9 Hz
  • Als we de in de opgave gegeven formule omschrijven vinden we voor de factor R waarmee het geluid vertraagd is

    R = fvleermuis / fTE detector

    R = 83·103 / 14250,9 = 5,8653

    Het geluid is dus afgerond 5,9 keer vertraagd.


Vraag 4

In figuur 6 lezen we af dat de frequenties van de 'laatvliegers' in een gebiedje rond 35 kHz liggen. In de HD-detector worden deze frequenties verschoven naar een gebiedje rond de 10 kHz. Voor de verschuiving waarop de HD-detector staat ingesteld vinden we dan

Δfinstel = 35kHz - 10 kHz = 25 kHz

Vraag 5

In figuur 1 lezen we in de linker grafiek af dat het geluid tijdens een roep van de dwergvleermuis afneemt van 90 kHz tot 29 kHz:

Het geluid van de dwergvleermuis bevat frequenties van 29 kHz tot 90 kHz

De breedte van het frequentiegebied is 90 kHz - 29 kHz = 61 kHz. De breedte van het voor mensen hoorbare gebied is 20 kHz - 0,02 kHz = 19,98 kHz:

Het verschil tussen de hoogste en laagste frequentie van de roep van de dwergvleermuis is groter dan het verschil tussen de hoogste en laagste frequentie van het hoorbare gebied.

Als de frequenties verschoven worden zal dit nooit kunnen passen in het hoorbare gebied omdat het frequentiegebied van de roep van de dwergvleermuis groter is dan dat van het menselijk gehoor.

Om de roep van de dwergvleermuis volledig hoorbaar te maken, kunnen de frequenties dus verkleind worden

Met de TE-detector worden de frequenties verkleind en kan het frequentiegied passen in de menselijke gehoorsgrenzen. Met de HD-detector wordt het verschoven en zal het nooit kunnen passen.

Om de roep van de dwergvleermuis volledig hoorbaar te maken is alleen de TE-detector geschikt










vleermuisdetector-1



Vraag over "Vleermuisdetector"?


    Hou mijn naam verborgen

Eerder gestelde vragen | Vleermuisdetector

Op zondag 19 mei 2024 om 15:11 is de volgende vraag gesteld
hoi, bij vraag 2 hoe weten we dat de golflengte 4keer zo groot is als de lengte van de buis?

Erik van Munster reageerde op zondag 19 mei 2024 om 15:31
Omdat het strottehoofd een buis is met één open en één gesloten kant. Bij een staande golf in zo’n buis is de golflengte van de grondtoon altijd gelijk aan 4 keer de lengte van de buis.

(Zie de videoles over gesloten buizen)