Laatste stand van zaken: De centraal-examens gaan gewoon door maar met extra herkansingen en een aangepaste zak-slaagregeling waarbij een extra onvoldoende mag.
Er is geen aanpassing van de examenstof.
Voor natuurkunde betekent dit dat er aan je voorbereiding voor het CE niet veel verandert.
Wel kan het zo zijn dat stof voor je schoolexamens dit jaar wordt aangepast. Dit is iets dat je school beslist.
Natuurkundeuitgelegd blijft gewoon online en al het materiaal blijft uiteraard gewoon toegankelijk.
Hoop dat ik je ook dit examenjaar weer kan helpen.
Ook al loopt alles anders: Bedenk dat als je in de examenklas zit dat dit niet voor niets zo is en dat je heus je examen wel zal halen.
Natuurkunde is een van de weinig dingen die niet veranderen in Coronatijd:
De natuurwetten blijven altijd geldig.
Deze uitwerking hoort bij opgave 10 uit het hoofdstuk "Geofysica VWO".
De opgaven zijn te vinden in FotonGeofysicaVWO.pdf
Videolessen
Theorie bij dit hoofdstuk strekt zich uit over alle onderwerpen. Er zijn geen videolessen die specifiek over dit onderwerp gaan.
Opgave a
De gravitatiewet luidt (BINAS tabel 35-A5)
Fg = G·mM / r2
Hieruit volgt voor de gravitatieconstante
G = Fg·r2 / mM
Invullen van
Fg = 1,52·10-7 N m=0,730 kg M =158 kg r = 0,225 m
geeft een waarde van G = 6,67158·10-11Nm2kg-2. Afgerond op drie cijfers is dit 6,67·10-11Nm2kg-2kg. Dit komt overeen met het getal wat we in BINAS tabel 7 vinden.
Opgave b
De straal van de baan die de maan om de aarde aflegt (r) vinden we in BINAS tabel 31: 384,4·106 m. De omlooptijd (T) vinden we ook in deze tabel: 27,32 dagen. In seconden is dit 27,32·24·60·60 = 2360448 s. De derde wet van Kepler luidt
r3/T2 = GM / 4π2
Hieruit volgt voor de massa van de aarde
M = 4π2r3 / G·T2
Invullen van
r = 384,4·106 m G = 6,67·10-11Nm2kg-2 T = 2360448 s
geeft een waarde van M van 6,03386·1024 kg. Afgerond op drie cijfers is dit 6,03·1024 kg.
Opgave c
In BINAS tabel 31 vinden we voor de massa van de aarde 5,972·1024 kg. De waarde die we met de wet van Kepler hebben berekend is dus te hoog.
Opgave d
Ook als we rekening houden met de significantie het verschil tussen de berekende aardmassa en de werkelijk aardmassa te groot. Het heeft dus niet te maken met meetonzekerheid of nauwkeurigheid. Er is dus sprake van een sytematische fout. Kennelijk mogen we dus niet zomaar de wet van Kepler gebruiken op de manier zoals we in deze opgave hebben gedaan.
Vraag over opgave "Aardmassa"?
Hou mijn naam verborgen voor andere bezoekers
Sorry
: (
Als je een vraag wil stellen moet je eerst inloggen.