Inloggen

Gesloten buis

Bij een buis met één gesloten en één open uiteinde ontstaan andere staande golven dat in een buis die aan beide zijden open is. Dit komt omdat er een knoop aan de gesloten zijde ontstaat en een buik aan de open zijde. Ook de boventonen zijn anders dan in een open buis en hierdoor ook de verhouding tussen de frequenties van de grondtoon en die van de boventonen. In deze videoles worden de belangrijkste eigenschappen van staande golven in een aan één kant geloten buis behandeld.



Voor het afspelen van de videoles 'Gesloten buis' moet je ingelogd zijn
Nieuwsgierig? Kijk een demoles:
Voorvoegsels / Harmonische trilling / ElektronVolt

Voorkennis

Golf, golflengte

Formules

 
Frequentie
enkelgesloten buis
f = ¼(2n-1) v/L f = frequentie (Hz)
n = 1,2,3,…
v = golfsnelheid (m/s)
L = lengte buis (m)
 
Lengte
enkelgesloten buis
L = ¼(2n-1)·λ L = lengte buis (m)
n = 1,2,3,…
λ = golflengte (m)

Moet ik dit kennen?

De stof in videoles "Gesloten buis" hoort bij:

HAVO:       Centraal examen (CE)
VWO: : Centraal examen (CE)

(In het oude examenprogramma: HAVO:CE VWO:CE)

Test jezelf - "Gesloten buis"

Maak onderstaande meerkeuzevragen, klik op 'nakijken' en je weet meteen de uitslag. Als je één of meer vragen fout hebt moet je de videoles nog maar eens bekijken.
Vraag 1
Vraag 2
Vraag 3
Welk van onderstaande verdelingen van knopen en buiken hoort bij een staande golf in een buis met één gesloten uiteinde

Wat is de grondfrequentie van een aan één kant gesloten buis met een lengte van 1,0 meter bij kamertemperatuur?

De grondtoon van een buis met één gesloten uiteinde heeft een frequentie van 250 Hz. Wat is de frequentie van de eerste boventoon?

B K B K B
K B K
K B K B
86 Hz
116 Hz
172 Hz
300 Hz
500 Hz
750 Hz


Extra oefenmateriaal?

Oefenopgaven over het onderdeel trillingen & golven vind je in:
FotonTrillingenGolvenHAVO.pdf
FotonTrillingenGolvenVWO.pdf

Examenopgaven

Recente examenopgaven waarin "Gesloten buis" een rol speelt (havo/vwo):
Onderzoek naar geluid in een fles (v),

Vraag over "Gesloten buis"?


    Hou mijn naam verborgen

Eerder gestelde vragen | Gesloten buis

Op zaterdag 9 jun 2018 om 11:59 is de volgende vraag gesteld
Beste Erik,

Wat is het verschil tussen een staande golf in een gitaar snaar en een transversale golf in een touw? En wat is het verschil tussen een staande golf in een gitaar snaar en gewoon een trilling?

Ik kom hier niet echt uit helaas..

Alvast bedankt!

Groeten

Erik van Munster reageerde op zaterdag 9 jun 2018 om 12:37
Transversaal en longitudinaal zegt alleen iets over of de trilling loodrecht het touw staat of parallel. Het zegt niks over of het een staande of een lopende golf is. Er bestaan transversale staande golven (zoals in een gitaarsnaar) maar ook lopende transversale golven (zoals golven op zee).

Misschien ga je een beetje te snel. Ik zou aan de hand van de vidoelessen eerst goed proberen te snappen wat golven zijn. ..en daarna het verschil tussen transversaal en longitudinaal. En pas daarna...als je dit goed door hebt beginnen aan de videoles over snaren.

De oefenopgaven over trillingen en golven (hierboven via "oefenen") werken ook zo. Eerst de opgaven over golven en transversaal/longitudinaal. Pas daarna de opgaven over staande golven.


Soufiane Ajjaji vroeg op donderdag 10 mei 2018 om 15:30
Hoi,

U zegt bij 2:12 dat buis met, K B K B de onderstaande golf moet geven (dus 1,25 lambda) maar K B K B is toch 3/4 lambda?

Alvast bedankt
Mvg

Erik van Munster reageerde op donderdag 10 mei 2018 om 17:09
K B K B is inderdaad 3/4 lambda . De 5/4 lambda waar ik het over heb is het plaatje wat daaronder staat (met de grafiek). Beide plaatjes komen inderdaad niet met elkaar overeen.


Bodine Kuiper vroeg op zondag 7 mei 2017 om 17:27
Hallo Erik,
Ik vraag me af wat er wordt bedoeld met een ondersteuningspunt. Wanneer is iets een open en wanneer is iets een gesloten uiteinde? Als er bijvoorbeeld bij een blokfluit een gaatje wordt opengelaten, wat voor invloed heeft dit dan? En is het deel waar in wordt geblazen niet altijd gesloten?
Alvast bedankt.
Vriendelijke groet

Erik van Munster reageerde op zondag 7 mei 2017 om 19:25
Het is bij muziekinstrumenten meestal niet meteen aan de vorm te zien of het zich als een buis met twee open uiteinden of als een buis met één open uiteinde gedraagt. Je kunt hier achter komen door naar de boventonen te kijken die geproduceerd worden. Zie bijvoorbeeld de examenopgave "Sopraansaxofoon" uit 2010 (VWO 2e tijdvak):

Het "ondersteuningspunt" ging over één specifieke opgave ("Xylofoon uit 2008 VWO 1e tijdvak).


Mohamed el Marini vroeg op zondag 8 jan 2017 om 18:46
Beste heer Van Munster,

De formule voor de frequentie, die u opgenomen hebt in uw videofragment (f =(2n-1)x v/l) klopt niet. Verder staat er geluidssnelheid in plaats van golfsnelheid.
f = 1/4 x (2n-1)x v/l verder in uw uitleg onderaan "Voorkennis" is de goede, denk ik.

Erik van Munster reageerde op zondag 8 jan 2017 om 20:34
Dag Mohamed,

Klopt, je hebt helemaal gelijk: Er is een factor ¼ weggevallen in de formule voor de frequentie in de videoles. Er had moeten staan f = (2n-1) * ¼ *v/L. (zie ook de tweede vraag van Kim hieronder)


Op donderdag 5 mei 2016 om 19:52 is de volgende vraag gesteld
Goedenavond meneer van Munster,

Hoe bepaal je de frequentie van de 1e boventoon als een golflengte gegeven is?

En vaak staat er ook bepaal met behulp van de gegevens om de hoeveelste boventoon het gaat.
Hoe pak je zo'n vraag aan?

Ik hoor graag van u.

Erik van Munster reageerde op donderdag 5 mei 2016 om 21:10
Als je de golflengte al weet kun je met f = v/lambda de frequentie uitrekenen. (Daarvoor hoef je niet eens te weten de hoeveelste boventoon het is)

Over je tweede vraag:
Hier is helaas geen standaardaanpak voor. Hangt helemaal af van de situatie en welke gegevens je krijgt. Belangrijkste is dat je eerst de theorie van staande golven en boventonen goed kent. Veel oefenen helpt ook. Als je vaak genoeg een bepaald probleem hebt gezien ga je op een gegeven moment dingen herkennen en weet je hoe je het aanpakt.


Mandy Kraijenoord vroeg op dinsdag 3 mei 2016 om 12:30
Beste Erik,

ik snap niet zo goed hoe je die 'n' moet invullen.
Hoe weet je welk getal je daar moet invullen in de formule?

groetjes !

Erik van Munster reageerde op dinsdag 3 mei 2016 om 20:39
Dag Mandy,

Meestal kun je uit de vraag wel afleiden wat je voor n moet invullen. Er staat dan niet letterlijk n=1 maar bijvoorbeeld wel dat het om de grondtoon gaat en dat weet je dat je n=1 moet invullen. Of bijvoorbeeld dat het om de zoveelste boventoon gaat.



Als het juist de vraag is welke boventoon het is kun je uit de rest van de gegevens meestal bepalen wat de waarde van n is.


Kim Wieltink vroeg op woensdag 27 jan 2016 om 20:04
Ik begreep dat n een halve golflengte is. Dat voor bijvoorbeeld 1 trilling geldt, n=2.
Is dit alleen zo bij een buis met 2 open uiteinden? Ik lees ergens anders namelijk dat bij een buis met 1 open kant en 1 gesloten kant geldt: bij K aan de gesloten kant en B aan de open kant is het n=1. Ik zou hier denken n=0,5 want er is maar sprake van een kwart golflengte. Kun je dit misschien uitleggen?

Erik van Munster reageerde op woensdag 27 jan 2016 om 21:31
Het getal 'n' moet je meer zien als een nummer waarmee de verschillende boventonen en bijbehorende golfvormen worden aangeduid.

n=1 betekent: 'de eerste staande golf die in een situatie mogelijk is'

n=2 betekent: 'de tweede staande golf die in een situatie mogelijk is'

etc...


Het is dus niet zo dat n altijd het aantal golflengte aanduidt of zo want dit verschilt van situatie tot situatie. Bij een buis met twee open uiteinde is het inderdaad zo dat n gelijk is aan het aantal halve golflengtes maar bij een gesloten uiteinde is de situatie weer heel anders. Het is dus makkelijker om n gewoon als een soort rangnummer te zien.

Kim Wieltink reageerde op woensdag 27 jan 2016 om 22:09
Oke dankjewel!


Kim Wieltink vroeg op woensdag 27 jan 2016 om 18:49
Hoi Erik,

Ik snap vraag 2 niet helemaal. Bij het antwoord staat dat je de formule f=(2n-1)*v/4l gebruikt maar ik begrijp uit het filmpje dat het f=(2n-1)*v/l is. Waar komt de 4l vandaan?

Alvast bedankt!

Erik van Munster reageerde op woensdag 27 jan 2016 om 21:26
Dag Kim,

In het filmpje had er nog 1/4 in de formule moeten staan. De juiste formule moest zijn:

f = 1/4*(2n-1)* v/l

(zie ook onder het kopje "formules" hierboven.

Over waar de 1/4 vandaan komt:
In het filpmje zie je dat er in de grondtoon precies een kwart golflengte in de buis past. Vandaar 1/4.


Op maandag 27 jul 2015 om 14:41 is de volgende vraag gesteld
Beste Erik,

Bij een xylofoon heb je staven waar je op slaat.
Moet je bij een staaf uitgaan dat beide uiteinde een knoop zijn of gelden hier andere regels voor

Erik van Munster reageerde op vrijdag 31 jul 2015 om 20:46
Dat hangt er vanaf hoe de staaf ondersteund wordt: Op de punten waar de staaf op rust ontstaat een knoop omdat de staaf op dat punt niet beweegt. Meestal zijn de ondersteuningspunten niet aan het uiteinde dus het antwoord op je vraag: Nee, knopen ontstaan niet aan het uiteinde maar aan het ondersteuningspunt.

Als er twee ondersteuningspunten zijn ontstaat er precies midden tussen deze knopen een buik. De afstand tussen de ondersteuningspunten is precies een halve golflengte.

(sorry voor het late antwoord)


Naomi van Lamoen vroeg op zondag 17 mei 2015 om 14:46
Wat houdt de n precies in? wanneer geldt n = 1 en wanneer n= 3 etc? Is dat afhankelijk van het aantal knopen of buiken of wat? Groetjes!

Erik van Munster reageerde op zondag 17 mei 2015 om 15:25
Dag Naomi,

In een buis kunnen verschillende staande golven voorkomen. Om ze uit elkaar te houden hebben deze staande golven allemaal een nummer gekregen (n=1,2,3...)

De eenvoudigste hiervan ,met de grootste golflengte en de laagste frequentie, heeft nummer 1 gekregen (n=1). De hierop volgende met een kleinere golflengte en een grotere frequentie is n=2, etc...

Bij toenemende n neemt inderdaad ook het aantal knopen en buiken toe wat zich in de buis bevindt maar het is niet precies gelijk aan elkaar. In de videoles zie je plaatjes van de verschillende golfvormen bij verschillende n.


Ewoud Luiten vroeg op zondag 18 mei 2014 om 17:20
Hoi Erik, ik heb problemen met een vraag uit systematische natuurkunde kernboek 5 vwo. Heeft u dit boek? Het gaat om hoofdstuk 4 vraag 19, over een microfoon en twee luidsprekers. Ik dacht dat je de golflengte gewoon kon aflezen door de afstand tussen bijv. 2 maxima te nemen, maar volgens de uitwerkingen kan dit niet.

Erik van Munster reageerde op zondag 18 mei 2014 om 19:16
Dag Ewoud,

Het gaat hierbij om het VERSCHIL in weglengte. Dus het verschil tussen afstand A tot de microfoon en afstand B tot de microfoon.

Als de microfoon x cm naar rechts opschuift wordt de afstand tussen microfoon en A x cm groter maar de afstand tot B wordt x cm kleiner. Het verschil in afstand neemt dus toe met 2*x.

Als het verschil in afstand gemeten vanaf het midden toeneemt met precies een golflengte heb je het volgende maximum. Dus geldt 2*x = lambda.

(Om het nauwkeuriger te doen kijk je niet naar het eerste maximum maar naar het 4e maximum).


Op maandag 28 apr 2014 om 17:56 is de volgende vraag gesteld
Hallo meneer Erik,ik had een vraag over vraag 3 opgave 1 2012 http://www.natuurkundeuitgelegd.nl/examens/nah122vb.pdf ik heb hier de verhouding berekend maar hoe kom je eraan dat je hier te maken hebt met de tweede boventoon alvast bedankt.

Erik van Munster reageerde op maandag 28 apr 2014 om 21:20
Er staat in de vraag dat de hoorn een buis met één gesloten uiteinde is. De verhoudingen van de frequenties van de grondtoon en de boventonen die bij een buis met een gesloten uiteinde horen zijn altijd

1,3,5,7,9...

Je komt, als het goed is, uit op een verhouding van 5. De frequentie van de boventoon is 5x zo groot als die van de grondtoon. Dit hoort bij n=3 dus bij de 2e boventoon.

Bij deze vraag zijn dus de frequenties

48 Hz (grondtoon)
144 Hz (1e boventoon)
240 Hz (2e boventoon)
336 Hz (3e boventoon)
etc...

Op maandag 28 apr 2014 om 23:53 is de volgende reactie gegeven
Hmm oke kunt u misschien ook uitleggen wat er zou gebeuren als de boventoon 4 keer groter is dan grondtoon (192Hz) en de verhoudingen van buizen met open uiteinden is ook 1,3,5,7,9.... Toch?

Erik van Munster reageerde op dinsdag 29 apr 2014 om 09:33
Alleen bij een buis met één gesloten uiteinde zijn de verhoudingen 1,3,5,7,9... Bij een aan beide zijden open buis (en een snaar) zijn de verhoudingen simpelere: 1,2,3,4...

Een boventoon met een 4x grotere frequentie dan de grondtoon kom je dus alleen maar tegen bij een aan beide zijden open buis of op een snaar. Het kan dus nooit een aan een zijde gesloten buis zijn.

Je kunt het ook aan de formules zien. In de formule voor een aan één zijde gesloten buis staat de factor (2n-1). Als je hier n=1,2,3,4 invult kom je vanzelf op de reeks 1,3,5,7. In de formule voor een aan beide zijde open buis komt gewoon de factor n voor.

M B reageerde op dinsdag 29 apr 2014 om 12:52
Nogmaals bedankt


Op zondag 27 apr 2014 om 14:10 is de volgende vraag gesteld
Om het wat makkelijker te zeggen staat n voor het aantal buiken.
Dus gewoon n= aantal buiken

Erik van Munster reageerde op zondag 27 apr 2014 om 15:29
Ja dat klopt. In het geval van een aan een kant gesloten buis is n inderdaad gelijk aan het aantal buiken. Maar je moet wel even opletten op de vorm van de golf in de buis. De buik die aan de kant van de opening ligt eindigt ook abrupt aan het einde van de buis. De andere buiken zijn het 'complete bergje' (of dalletje).


Op zondag 27 apr 2014 om 14:09 is de volgende vraag gesteld
Hallo Erik,

Bij een lopende golf is de golflengte van een grondtoon een halve labda. Bij een staande golf is dat een vierde labda. Wat is dan de golflengte van de eerste boventoon in een staande golf en de golflengte van een tweede boventoon in een staande golf enz.?

Erik van Munster reageerde op zondag 27 apr 2014 om 15:25
Golflengte is altijd lambda (dat is nu eenmaal het symbool van golflengte). Zowel bij lopende als bij staande golven geldt ook altijd lambda=v/f.

Je hebt pas 1/2 en 1/4 nodig als je het hebt over staande golven in een buis of een snaar. In een buis die aan een kant gesloten is (waar deze videoles over gaat) geldt dat er in de buis 1/4 golflengte past. Er geldt dan dus lambda = 1/4*L, met L de buislengte.

Op zondag 27 apr 2014 om 17:36 is de volgende reactie gegeven
Dus een grondtoon is altijd 1/2 labda?

Ik snap het nog niet helemaal...

Op zondag 27 apr 2014 om 18:02 is de volgende reactie gegeven
In het filmpje zegt u namelijk dat een knoop en een buik: 1/4 labda is en dat dit de grondtoon is. Terwijl bij een snaar( waar uiteindes 2 knopen zijn) is de grondtoon een halve labda...

Erik van Munster reageerde op maandag 28 apr 2014 om 21:02
Het gaat om de verhouding tussen de lengte van de snaar of buis en de golflengte. Bij een snaar geldt niet "de grondtoon is 1/2 lambda" maar "bij de grondtoon past er precies 1/2 lambda op de snaar"

Bij een buis met één gesloten uiteinde past er bij grondtoon precies 1/4 lambda in de lengte van de buis.

Als je de lengte van de buis of snaar weet kun je er zo dus achter komen wat de golflengte is.


Fatima-Zohra Rouidi vroeg op woensdag 19 feb 2014 om 20:18
ik snap niet waar 'n' precies voor staat bij de formule : l= 2(n-1)1/4Y

Erik van Munster reageerde op woensdag 19 feb 2014 om 21:57
Dag Fatima,
In een buis kunnen verschillende soorten staande golven ontstaan. Deze verschillende soorten worden aangeduid met een nummer: n=1,2,3... Elke soort staande trilling heeft zijn eigen golflengte en frequentie. Door het invullen van de waarde van n kun je voor elke staande golf de frequentie, golflengte etc. bereken.

n=1 is de meest eenvoudige staande golf met de laagste frequentie. n=2 de daaropvolgende enz...


Caroline Sladek vroeg op dinsdag 14 mei 2013 om 19:45
Hoi!
Maar ik begrijp nog niet waarom het (4-l) is? Het is toch eigenlijk 1/4 voor (2n-1)* v/l ?

Erik van Munster reageerde op dinsdag 14 mei 2013 om 20:44
1/4 maal (2n-1)*v/l wordt (2n-1)*v/4l. Het is gewoon een andere manier van opschrijven.

PS: Het is geen 4 min l maar gewoon 4l


Erik


Op zaterdag 11 mei 2013 om 16:53 is de volgende vraag gesteld
kunt u uitleggen hoe u de formules l = šù(2n-1)⋅¥ë en f=v/¥ë bij elkaar voegt?

ik zie dat u in het filmpje f=(2n-1) v/l schrijft, ik neem aan dat u hier een foutje hebt gemaakt?

Erik van Munster reageerde op zaterdag 11 mei 2013 om 22:11
Uit v=f*lambda volgt lambda=v/f. Als je dit invult in l = 1/4*(2n-1)*lambda volgt

l = 1/4*(2n-1)*v/f

Beide kanten met f vermenogvuldigen geeft:

l*f = 1/4*(2n-1)*v

Beide kanten delen door l geeft:

f = 1/4*(2n-1)*v/l

In het filmpje moet inderdaad eigenlijk staan:
f = 1/4*(2n-1) v/l
Zie ook vraag hieronder


Godelieve Franssen vroeg op zondag 10 feb 2013 om 13:41
bij vraag 2 moet je toch de formule f = (2n-1)*(v/l) gebruiken? hier komt uit: 343 Hz. Bij de uitleg staat een formule die volgens mij niet klopt (er staat f in terwijl je die moet berekenen...)

Erik van Munster reageerde op zondag 10 feb 2013 om 15:08
Hoi Godelieve,

Er moet in de formule nog een factor 4 waardoor je moet delen. Je komt dan op 86 Hz uit. De formule zoals deze in de videoles op het bord staat ontbreekt dit. De formule moet zijn f= (2n-1)*v/(4l). Je komt dan op 86 Hz uit.

Godelieve Franssen reageerde op zondag 10 feb 2013 om 15:39
aha, vandaar! bedankt


Valentijn Wibaut vroeg op zondag 20 mei 2012 om 12:54
Bij een buis met één open en één gesloten uiteinde zijn de frequenties van de grondtonen altijd gelijk aan 3*n*f,grondtoon.
Bij snaren en open buizen is dit 2*n*f,grondtoon.

Klopt dat?

Erik van Munster reageerde op zondag 20 mei 2012 om 13:02
Hoi Valentijn,

De frequentie van eerste boventoon is wel een factor 3 hoger dan de grondtoon en bij een aan twee zijden open buis en factor 2 dus daar kun je het aan herkennen maar de rest van de reeks in anders:

Bij een eenzijdig gesloten buis zijn de verhoudingen 1:3:5:7:9:11... en dus NIET 1:3:6:9:12... Dit blijkt ook uit de formule. Hierin komt de factor (2n-1) voor als je hier n=1,2,3.. invult krijg je vanzelf de genoemde reeks.

Succes morgen!