Inloggen

Meetonzekerheid & significantie

Getallen hebben in de natuurkunde niet alleen een grootte en een eenheid maar ook een onzekerheid. Deze onzekerheid is het gevolg van onnauwkeurigheid in metingen. Ook het meest gevoelige meetinstrument heeft een onnauwkeurigheid in de meting. Bij een heel nauwkeurig apparaat is deze onzekerheid heel erg klein en bij een wat onnauwkeuriger apparaat wat groter. Bij natuurkunde geven we de nauwkerigheid van een getal weer met het aantal cijfers waarmee we het getal schrijven. 6,000 m is dezelfde lengte als 6 m maar door het met 4 cijfers te schrijven geven we aan dat het nauwkeurig bepaald is. Regel hierbij is dat je alleen cijfers opschrijft waarvan je zeker bent. In deze videoles wordt uitgelegd hoe je aan een getal kunt zien hoe groot deze onzekerheid is en wat de regels zijn bij het opschrijven van getallen.



Voor het afspelen van de videoles 'Meetonzekerheid & significantie' moet je ingelogd zijn
Nieuwsgierig? Kijk een demoles:
Voorvoegsels / Harmonische trilling / ElektronVolt

Voorkennis

Eenheid, grootheid

Moet ik dit kennen?

De stof in videoles "Meetonzekerheid & significantie" hoort bij:

HAVO:       Centraal examen (CE)
VWO: : Centraal examen (CE)

(In het oude examenprogramma: HAVO:CE VWO:CE)

Test jezelf - "Meetonzekerheid & significantie"

Maak onderstaande meerkeuzevragen, klik op 'nakijken' en je weet meteen de uitslag. Als je één of meer vragen fout hebt moet je de videoles nog maar eens bekijken.
Vraag 1
Vraag 2
Vraag 3
Je voert dezelfde meting vier keer achter elkaar uit (zie onder). Wat schrijf je op als meetresultaat?
3,496 m
3,524 m,
3,511 m
3,483 m

Wat is de absolute fout van
t = 1,54 s?

Wat is de relatieve fout van
t = 1,54 s?

3,5035 m
3,504 m
3,5 m
0,005
0,05
0,5
0,30%
0,05%
0,01%


Extra oefenmateriaal?

Oefenopgaven over het onderdeel algemeen vind je in:
FotonAlgemeenHAVO.pdf
FotonAlgemeenVWO.pdf

Examenopgaven

Recente examenopgaven waarin "Meetonzekerheid & significantie" een rol speelt (havo/vwo):
Onderzoek naar geluid in een fles (v), Elektrische tandenborstel (v),

Vraag over "Meetonzekerheid & significantie"?


    Hou mijn naam verborgen

Eerder gestelde vragen | Meetonzekerheid & significantie

Op dinsdag 6 feb 2018 om 17:13 is de volgende vraag gesteld
Ik heb nog een vraagje: als je 0,2365 x 12,3 doet moet je dan het minst aantal significante cijfers aan houden? Dus 2,90 of 2,91 of 2,90895 of iets anders?

Erik van Munster reageerde op dinsdag 6 feb 2018 om 17:28
Je doet eerst de berekening zonder af te ronden: 0,2365 x 12,3 = 2,90895. Daarna ga je kijken naar het aantal significante cijfers waarop je moet afronden:

0,2365 zijn 4 significante cijfers
12,3 zijn 3 significante cijfers

Je rondt altijd af op het KLEINST aantal significante cijfers van de gegevens. In dit geval is dit 3 significante cijfers. Het afgeronde eindantwoord wordt dus 2,90895 afgerond op 3 significante cijfers. Dit is 2,91.

Op dinsdag 6 feb 2018 om 17:30 is de volgende reactie gegeven
Oke, alweer heel erg bedankt.

Op dinsdag 6 feb 2018 om 17:36 is de volgende reactie gegeven
O wacht ik kom nu nog wat tegen en nu ben ik het weer kwijt. Als je 4,2: 0,003579 hebt dan kom ik op het antwoord 1173.512154 maar nu heb je al sowieso meer significante cijfers dan 2 (van 4,2). Namelijk 1173 zijn er al vier. Hoe moet ik dit nu aan pakken?

Erik van Munster reageerde op dinsdag 6 feb 2018 om 18:17
Als je 1173 wil afronden op 2 cijfers heb je wetenschappelijke notatie nodig (zie de videoles daarover):

Afgerond is het 1,2*10^3


Op dinsdag 6 feb 2018 om 16:59 is de volgende vraag gesteld
Ik weet niet hoe ik het moet uitleggen maar u geeft een voorbeeld over de temperatuur van 21,7 graden Celsius. Waarom is bij 21,65<T< 21,75 , het 21,75 ? Je rond de vijf toch naar boven af?

Erik van Munster reageerde op dinsdag 6 feb 2018 om 17:21
Klopt, als het 21,75 zou zijn zou je inderdaad naar boven afronden. Maar, er staat "kleiner dan" 21,75 en niet "kleiner en gelijk". Dat betekent dat T ligt tussen 21,65 en 21,749999999...

Maar waar het hier om gaat is dat als je schrijft "T=21,7" dat dit betekent dat T dus ook 21,72 of 21,66 of 21,74 kan zijn.

Op dinsdag 6 feb 2018 om 17:25 is de volgende reactie gegeven
Oke, bedankt! Nu snap ik het.


Op vrijdag 7 jul 2017 om 05:08 is de volgende vraag gesteld
Voor een practicum
Hoe bereken je de meetonzekerheid van de soortelijke weerstand?
voor I is deze tot 3 cijfers achter de komma
voor R en l en U is dit tot twee cijfers achter de komma.
dus bij bv 0,25 betekend dat het vanaf 0,245 tot 0,254 is en de meetfout daar dus 0,009 is Voor 3,12 berekend ze dan 3,115 tot 3,124 wat dezelfde meetfout inhoud
Is dan de formule meetfout gedeeld door meting maal 100%?
En is dit dan de procentuele afwijking?
En moet je deze dan van de twee punten berekenen begin en eind van de trendlijn, of eerste meting en laatste meting?
En wat zijn hierbij de gemiddelde meetwaarden?, alle meetwaarden opgeteld en gedeeld door het aantal metingen (dat zou ik dan zeggen dus)?
Welke vier gevonden percentages bedoelen ze?
Hoe doe je dan vervolgens de schatting van de meetwaarden?
En hoe bepaal je daarmee dan de absolute meetonzekerheid van de soortelijke weerstand?

Erik van Munster reageerde op vrijdag 7 jul 2017 om 10:42
Als je de stroom afleest met drie cijfers achter de komma wil dat niet zeggen dat dit de nauwkeurigheid ook zo groot is. Als je de hele opstelling afbreekt en weer opbouwt en alles opnieuw meer zul je echt niet precíes dezelfde stroom meten. De beste manier om achter de onzekerheid te komen is door een paar verschillende metingen onafhankelijk van elkaar te doen. Als je de meetgegevens op een rijtje zet zul je zien dat de stroom niet steeds hetzelfde is en de mate waarin het afwijkt afwijkt geeft je een indruk van de nauwkeurigheid. Je ziet dan vanzelf of de afwijking 1% of 10%..

Gemiddelde meetwaarde is inderdaad alle meetwaarden opgeteld en gedeeld door het aantal. Dit is nauwkeuriger dan één enkele meetwaarde.


Lisabeth Van Berkel vroeg op donderdag 3 jul 2014 om 19:06
je krijgt bijvoorbeeld dit sommetje: 3000*0.20 ik heb als antwoord gezien hierop (significant afgerond) 6,0*10^2 maar is 60*10 ook goed?

Lisabeth Van Berkel reageerde op donderdag 3 jul 2014 om 19:06
dus 60 keer tien ipv 6 komma 0 keer 10^3

Erik van Munster reageerde op vrijdag 4 jul 2014 om 14:58
0,60*10^3
6,0*10^2
60*10

Betekent allemaal precies hetzelfde. Is dus ook allemaal goed. Zolang je er maar voor zorgt dat het aantal significante cijfer hetzelfde (in dit geval: 2) blijft mag je het opschrijven zoals je wil.

Wel is gebruikelijk om het op te schrijven met één cijfer voor de komma dus 6,0*10^2, maar op een andere manier mag dus net zo goed.


Op maandag 19 mei 2014 om 20:17 is de volgende vraag gesteld
Wat is dan de relatieve fout?

Erik van Munster reageerde op maandag 19 mei 2014 om 22:16
Relatieve fout is de absolute fout gedeeld door het getal zelf. In het voorbeeld van 1,54 s is dit dus 0,005 / 1,54. Dit is 0,003 of te wel 0,3%

Relatieve fout zegt hoe nauwkeurig een meting is. Hoe groter het aantal significante cijfers in een getal hoe kleiner de relatieve fout.


Op dinsdag 27 aug 2013 om 14:14 is de volgende vraag gesteld
Volgens mij is er een type fout bij vraag 3. Bij de uitleg wordt namelijk een ander antwoord gegeven dan wat bij vraag 3 staat.

Erik van Munster reageerde op dinsdag 27 aug 2013 om 17:50
Klopt, het antwoord moet natuurlijk 0,3% zijn. Ik heb het verbeterd. Dank voor je opmerking...


Op woensdag 31 jul 2013 om 10:16 is de volgende vraag gesteld
Wat wordt er met absolute "fout" bedoelt? Is dat het getal wat erbij komt, waardoor het afgerond geen 1,54 meer is?

Erik van Munster reageerde op woensdag 31 jul 2013 om 17:42
Absolute fout betekent hoeveel groter of kleiner een waarde in werkelijkheid is.

Als je opschrijft 1,54 s wordt in de natuurkunde eigenlijk bedoeld: "Alle getallen die afgerond 1,54 zijn"

1,54 kan bijvoorbeeld betekenen 1,542, 1,5394 of 1,5401. Als je afrondt op drie cijfers kom je namelijk steeds op 1,54.

Het kleinste getal wat afgerond 1,54 is is 1,535000. Het grootste getal wat afgerond 1,54 is is 1,5449999. In beide gevallen is de afwijking 0,005 t.o.v. 1,54. Dit is de absolute fout.