De stof in videoles "Toepassen verbanden" hoort bij:
kunnen uitvoeren.
Maak onderstaande meerkeuzevragen, klik op 'nakijken' en je weet meteen de uitslag.
Als je één of meer vragen fout hebt moet je de videoles nog maar eens bekijken.
Eerder gestelde vragen | Toepassen verbanden
Judith Henrietta vroeg op vrijdag 20 nov 2020 om 15:04
Je hebt formules als x~y en y÷x=c en y=c•x en x~l:y
Ik weet dat de c voor constante staat. De x en de y voor de verticale en horizontale lijn in de diagram. Maar waar staat de l voor?
Erik van Munster reageerde op vrijdag 20 nov 2020 om 16:42
Als er een omkeerd evenredig verband is tussen x en y dan geldt:
x ~ constante / y
of
y ~ constante / x
De l is dus ook een constante. Wat l dan precies betekent hangt van de situatie af.
William John Riem vroeg op donderdag 6 aug 2020 om 16:14
Bij het berekenen van de constante (in het voorbeeld): hoe groot mag de afwijking zijn tussen de verschillende resultaten? Hoe groter de getallen hoe groter ook de afwijking zou ik denken. Maar is er ook een bepaalde regel voor zoiets?
Erik van Munster reageerde op donderdag 6 aug 2020 om 17:54
Nee, daar is niet een standaardregel voor. Hoe kleiner de afwijking hoe zekerder je bent van een bepaald verband en van de constante.
Nauwkeurigheid hangt namelijk ook af van de afwijkingen van de metingen en van het aantal metingen.
Op maandag 11 sep 2017 om 18:51 is de volgende vraag gesteld
Goede avond, kunt u mij misschien tips geven over hoe je in een grafiek makkelijk kunt zien wat voor verband het is. welke stappen moet je dan nemen?
Erik van Munster reageerde op maandag 11 sep 2017 om 19:37
Ik neem aan dat je het hebt over grafieken zoals je ze vaak bij natuurkunde tegenkomt? Zo ja: In BINAS tabel 36A staan voorbeeldgrafieken van de belangrijkste verbanden die je voor natuurkunde moet kennen. Kan handig zijn.
Kijk altijd eerst of het een rechte lijn is. Zo ja: Als de lijn door (0,0) gaat is het een recht evenredig verband. Als het niet door (0,0) gaat is het een lineair verband.
Als het géén rechte lijn kun je helaas niet in een keer aan de grafiek zien wat voor verband het is. Dit moet je met een berekening. Maar je kunt wel wat dingen aan de grafiek afleiden:
Als de grafiek stijgt kan het een kwadratische verband zijn (of een exponentieel verband maar dit komt niet zo vaak voor). Als de grafiek daalt is het oftwel een omgekeerd evenredig verband of een omgekeerd kwadratisch verband.
Myrthe van den Berg vroeg op maandag 21 mrt 2016 om 09:40
Hoi, in het antwoord van vraag 3 staat er "een omgekeerd kwadratisch evenredig verband" ik heb het idee dat dit "omgekeerd kwadratisch en recht evenredig verband" moet zijn?
Erik van Munster reageerde op maandag 21 mrt 2016 om 09:45
Dag Myrthe,
Officieel heet het "omgekeerd kwadratisch evenredig". In de praktijk wordt het vaak "omgekeerd kwadratisch" genoemd maar er wordt hetzelfde mee bedoeld.
Het woordje "evenredig" betekent dus niet "recht evenredig".
S Botschuijver vroeg op zaterdag 29 jun 2013 om 22:50
Hallo, u spreekt in vraag 3 dat bij dit filmpje hoort over het recht evenredig verband, maar van ''omgekeerd kwadratisch verband'' in het filmpje zelf. Ik geloof dat ze allebei hetzelfde betekenen. Is dat zo?, zo ja, wat betekent recht evenredig in de context?
Vriendelijk bedankt
Erik van Munster reageerde op zaterdag 29 jun 2013 om 23:31
Omgekeerd kwadratisch en recht evenredig zijn allebei soorten verbanden maar wel verschillend:
Recht evenredig betekent dat als het ene 2 keer zo groot wordt, dat ook het andere 2 keer zo groot wordt. Het verband tussen het volume water in een beker en de massa van dat water is bijvoorbeeld rechtevenredig.
Omgekeerd kwadratisch betekent dat als het ene 2 keer zo groot wordt, dat het andere 4 keer zo klein wordt. Bv het verband tussen de afstand en de lichtsterkte van een lamp. Als je 2 keer zo ver weg gaat staan lijkt de lamp 4 keer zwakker. is het volume water in een beker en de massa van dat water is bijvoorbeeld rechtevenredig.
(Zie ook de videoles verbanden)